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Abstract 
 

This paper analyzes the motion of a mannequin falling, such that the motion is similar to 
that of a human falling forwards. We utilized three separate sensors attached to the mid-chest, 
right waist, and right ankle that each detect the accelerations, rotation rate, and magnetic field 
alignment as the mannequin falls. The goal was to look at the data collected during a fall and 
pick out portions of the data that could serve as signals that a person was in the early stages of 
falling. The results showed that analyzing the magnitude of the acceleration was sufficient in 
noticing when the mannequin would begin falling due to the magnitude beginning to increase as 
the mannequin accelerated downwards due to gravity. However, this signal could be present in 
non-falling motions that people perform daily such as sitting down or bending over to pick 
something up. It then became a priority to be able to differentiate between what was a fall and 
what was a normal motion in order to prevent fall detectors from reaching the wrong conclusion.  

 

Introduction 
 

On average, an elderly person dies every 19 minutes due to fall-related injuries.1 Current 
fall recognition technology attempts to detect a fall and call emergency responders for help. 
However, these devices are unreliable in that they may give false positives and negatives. For 
instance, a movement such as sitting down might trigger the alarm, or it might not even register 
that an actual fall had happened. A reliable system to detect falls in real time and either trigger a 
prevention system or call for help automatically would save thousands of lives a year. 

Many detection devices determine a fall has happened once the victim has already hit the 
ground. A common, and simplest, example of a device like this is a button necklace that the 
victim wears at all times.2 If the victim falls, it detects them hitting the ground and then staying 
still, and it alerts authorities. Another example is to use less direct methods of detection, such as 
monitoring Wi-Fi or water usage in homes, and alert authorities when there is a significant 
change in a person’s routine.3 For both of these very common designs, the idea is the same: after 
the device believes that a fall has occurred, it will send an alert to whatever protection system has 
been included. This concept is helpful for rescuing people from potentially lethal situations after 
they happen, but more can be done. 

The goal for this project is to gather and interpret data that can be used to make a fall 
detector that serves as minimally intrusive into a user’s life. This device would search for 
indicators of a fall while it’s happening. Instead of looking for a large upward spike in 
acceleration or complete stillness for a long period of time, it would search for a steady 
downward motion determined by the rate of change of the acceleration, rotation rate and 
orientation with respect to the local magnetic field. 
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Equipment  
 

The microcontroller that we used to communicate with all of the sensors and devices was 
an Arduino Mega 2560. It operated at a voltage of 5V which was supplied by an external battery 
pack. The controller itself had a clock speed of 16 MHz. It communicated with three LSM9DS1 
9-Degree of Freedom sensors that calculated the acceleration, rotation rate, and magnetic field 
alignment. The LSM9DS1 supplies data at 16 bits and has a variety of g ranges, 
±2/±4/±6/±8/±16 g, but ours was operated at ±2 g as the accelerations that we would be 
calculating would be on a smaller scale. The sensor offers a ±4/±8/±12/±16 gauss magnetic full 
scale, as well as a ±245/±500/±2000 degrees per second (dps) angular rate scale4. The sensors 
were connected to the microcontroller through the SCL and SDA pins and communicated via an 
I2C connection. We utilized an 8 GB micro-SD card to hold the data that were gathered. 

Due to our use of three units of the LSM9DS1, there was the issue of the microcontroller 
being unable to communicate with three separate sensors that all used the same I2C address. To 
fix this we utilized TCA9548A I2C multiplexer to allow our device to collect data from each of 
the three LSM9DS1 devices. In order to control and view what was occuring on our device, we 
utilized a 16x2 LCD that had its display contrast controlled by a potentiometer and the content of 
the display controlled by a 4x3 keypad.  

All of this was installed on a printed circuit board (PCB) that we encased in a 3D-printed 
case for protection. 
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The mannequin used in the experiments had a height of six feet, with mass 12.25 kg and 
was acquired from the Krannert Center prop shop, which stores older and unused props. A photo 
of the mannequin with the data acquisition device attached is in Figure 2. 

 

Data Acquisition 
 

We utilized the Arduino developer design environment to create a program capable of 
pulling data from three accelerometers and and subsequently writing the data to an 8GB SD card. 
When creating the program, we wanted to make something that allowed us to begin and stop 
trials as well as create separate trials with ease. To achieve this, we created code that began a 
trial with the press of the ‘1’ key of a 9-key keypad and ended that trial with the press of the ‘2’ 
key. In order to avoid any confusion regarding what the program was doing at any time, we 
defined certain modes within the code. ‘Mode 0’ is the initial boot-up stage, where the program 
scans the device to ensure that there are three LSM9DS1’s connected, and an SD card inserted 
into the card holder. When the ‘1’ key is pressed, the device enters ‘Mode 1’ and begins writing 
the accelerometer, gyroscope, and magnetometer data to the SD card at a rate of roughly 30 HZ. 
‘Mode 1’ is active until the ‘2’ key is pressed and the mode is switched to ‘Mode 2’, which halts 
the writing of data to the SD card. A subsequent push of the ‘1’ key to enter ‘Mode 1’ after being 
in ‘Mode 2’ increments the file number and opens up a new data file, which is how we were able 
to perform multiple trials and separate the data between trials. There is also a ‘Mode 3’ which 
displays the current and voltage of the battery powering the device. 
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To increase the ease of use, we wanted to ensure that we knew what the program was 
doing at any moment that it was on. Using the LCD screen, we would print out the action that the 
code was performing. For example, when in ‘Mode 0’ the LCD screen reads “Press to Start”, 
when in ‘Mode 1’ it reads “Collecting to data0.csv” when it is writing to ‘data0’. When ‘Mode 2’ 
is active the LCD displays “Paused”.  

 
Experiment  
 

When performing test falls, we attached the three accelerometers to the front side of the 
test mannequin. One accelerometer was attached to the upper chest at a height of 57 inches, one 
was on the right waist at a height of 44 inches, and one was attached to the right ankle at height 
of 7 inches. The accelerometers were secured in cases such that there was no movement of the 
sensors relative to the mannequin to ensure that the sensors’ values mirrored the values of the 
mannequin. We chose the positioning of the accelerometers to gather data from the upper, 
middle, and lower portions of the body so that the data gathered could be used to analyze the 
behavior during a fall at the most extreme positions of the body relative to the center of mass, as 
well as analyze how the center of mass behaves. We believed that the chest and waist 
accelerometers would provide the most useful results, as the path that the upper and middle parts 
of the body travel during a fall is larger than that of an ankle. 

In order to obtain visuals for each trial, we would record a video that spanned a time 
shortly before the mannequin would fall and finished after the mannequin came to rest. To 
perform a test fall, we oriented the mannequin with its back facing an inflated air mattress to 
prevent damage to the mannequin or surroundings. We set it backwards due to the offset in the 
feet, as a forward fall would cause the mannequin to not fall directly to the center of the air 
mattress as desired. When oriented backwards we were more successful in allowing the 
mannequin to fall in a path that simulated a person falling directly forward.  

To initiate the experiment, we stood the mannequin at the edge of the air mattress and 
tilted slightly such that the mannequin would begin to fall as soon as we stopped supporting it. 
To begin a data trial, we would say the name of the trial on video and press the ‘1’ key to initiate 
the writing of data to the SD card. The initial state of the mannequin is shown in Figure 3. After 
initializing a trial run, the mannequin would be allowed to fall “naturally”, without any external 
force applied from the group. After being allowed to go through the falling motion (Fig. 4), the 
mannequin would then impact the air mattress (Fig. 5). After impact, the mannequin would then 
be allowed to let its kinetic energy dissipate on the following bounces. When the mannequin 
reaches rest again we would press ‘2’ and end the trial. 

We additionally attached our device to one of the group members and had them perform 
common actions in order to compare the data to that of the mannequin falling. The sensors were 
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attached in the same places as they were during the mannequin trials in order to contrast data 
directly from each body part. We wanted to analyze motions that could possibly be mistaken for 
a fall strictly by looking at the data, so the group member performed actions including sitting up 
and down, bending over, and going up stairs. The experimental procedures were otherwise the 
exact same as the mannequin trials. 
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Offline Analysis 
 

To visualize the results, the ‘.csv’ files that held the LSM9DS2 data were loaded into 
arrays in Spyder Python. We stored the values for the ‘x’, ‘y’, and ‘z’ acceleration, rotation rate, 
and magnetic field alignment in arrays that held the values for each time increment that the 
sensors data was written to the SD card. To create the time value array, we utilized the values 
that the Arduino on-board clock would give us and subtract the initial time value from each of 
the data arrays in order to have the data trial begin at t = 0.  

When graphing the data, we defined a function ‘plotData2’, which created each array 
previously mentioned as well as an array that holds the values for the magnitude of the 

acceleration,  . We then create twelve subplots that can plot the a = √ax2 + ay2 + az2  

acceleration, rotation rate, magnetic field alignment, and magnitude of acceleration versus the 
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time array. To speed up the process, we used a ‘for’ loop to perform this process for each file 
that we store in the working directory and create the graphs for each trial fall that we performed. 

Beyond ‘plotData2’, we created numerous functions to plot different aspects of the data, 

such as the magnitude of the gyroscope data, , which will help us analyze ⍵ = √⍵x
2 + ⍵y

2 + ⍵z
2  

the rotation of the body during falls, or the magnitude of the accelerometer data after performing 
various spatial transformations on it and comparing it with a simple physical model.  

The goal of the offline analysis is to characterize a fall before the victim hits the ground, 
based on data gathered in previous tests. To do this, the data were converted into a more regular 
and usable form using coordinate geometry and compared to a model, where the model is based 
on the approximate angle of the mannequin from the vertical at any point in time. A function was 
created to accumulate the difference between a small portion of the data and its corresponding 
points of a predictive model based off of a plank rotating around a fixed pivot, which will be 
explored more in depth in the next section.  

 
 

Results and Analysis 
 

The sensors gather data of three different values: acceleration, rotation rate, and magnetic 
field for orientation. Generally, the acceleration yields the most relevant and useful information 
for fall detection. The gyroscope is useful for determining the changing orientation of the sensors 
over time, which is important for data processing. The magnetometer data can be used to 
determine orientation, however it can be easily skewed from any magnetic devices nearby. For 
most of the data analysis, the acceleration will be used to analyze and detect falls, and the 
rotation rate will be integrated to determine angular orientation. 

7 



FALL DETECTION AND MITIGATION  

Figure 6 is a visual example of accelerometer data from a fall. The left column of plots 
depicts the x-, y-, and z- axis accelerations (blue, orange, and green respectively, as will be used 
for the remainder of this paper) for each accelerometer. The right column shows the magnitude 

of the acceleration for the given accelerometer, where the subscripts  a = √ax2 + ay2 + az2  

indicate that respective coordinate of acceleration in the rest frame of the accelerometer. The top 
row is the data gathered by the chest accelerometer, the second row is the left hip, and the third is 
from the ankle. 

 

8 



FALL DETECTION AND MITIGATION  

 
 
This data shows strange results upon first inspection. Figure 7 is an image of the 

acceleration measured by the chest accelerometer, before the fall occurs. This plot shows that the 
measured acceleration in the x- direction is approximately 7.5 , while the measured z-/sm 2  
direction acceleration is approximately -6 . The only acceleration that is present at that/sm 2  
moment is due to the gravitational field, which is approximately -9.8 in the z- direction. If/sm 2  
the accelerometer were reading the accelerations as one would expect, the x- acceleration 
component should read zero, while the z- component should read -g. This occurs because the 
accelerometer isn’t perfectly aligned with the coordinate frame in the lab. The chest 
accelerometer coordinate axes will be referred to as and , where the b stands for the, ,xb yb zb  
body frame coordinates. The lab coordinate axes will be defined as x,y, and z. Note that ,xb yb
and are measured in a left-handed coordinate frame.zb
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Figure 8 shows that, from the experimental setup, initial values of roughly correspondxb  
to the z- direction in the lab frame, and that of roughly correspond to the x- direction of thezb  
lab frame. They are roughly equivalent because the accelerometer is also tilted by some angle 
about Figure 7 shows that the acceleration due to gravity is measured partially in and in.yb xb  

when it should be completely measured in (because corresponds to the lab frame’s,zb xb xb  
z).To correct this, the accelerometer coordinate frame can be rotated about by an angleyb  
specified by the calibration data taken early in the run.  
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Figure 9 shows a corrected fall, depicting the accelerations in the lab frame. The 
acceleration of gravity is measured as -g in the direction and zero in the other directions,− xb  
which implies that it is standing still in the Earth’s gravitational field, vertically oriented. The 
acceleration magnitude properly increases with time during the fall, occurring between 2 and 3 
seconds. The data can now be analyzed. 

When analyzing a fall, it is useful to divide it into four sections. First, there is a two 
second interval in the beginning of each run where the acceleration is relatively constant, which 
is the time from starting our program to beginning the fall. This was depicted in Figure 7. This 
segment is used to calibrate the sensors orientation, looking for the precise angle to rotate about 

to align with the lab frame.yb  

 
Figure 10 shows the second section, which is from approximately 1.6 seconds to 3 

seconds, when the fall takes place. From 1.6 to 2.0 seconds, there is a slight increase in 
acceleration, which corresponds to lightly pushing the mannequin to initiate the fall. From 2.0 to 
2.2 seconds, the mannequin is tilting over and beginning to accelerate downwards. Starting after 
2.2 seconds, the acceleration increases with time, with the curve being convex. The convexity of 
the curve means that the time-rate of change in the acceleration is increasing. This general curve 
can be seen in all three magnitude graphs and is a useful signal to alert that a person may be 
falling. 
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The third region occurs for a brief time. Figure 11 shows a spike in the magnitude of 

acceleration from the chest sensor at 3.1 seconds, where it reaches a peak of 36.1  . This/sm 2  
region, from 3.10 to 3.20 seconds, represents the mannequin impacting the mattress and 
bouncing upwards. However, one must note that this data is that of a rigid mannequin impacting 
a surface that allows it to bounce.  The fall of a human onto a carpeted or hardwood floor may 
have a different magnitude of measured acceleration changes, but the large spike due to the 
impact will still be present. We believe that this acceleration spike is a key feature of the falling 
process, as reaching a magnitude of 36 in an interval of .2 seconds is behavior that does not/sm 2  
occur in everyday life.  
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The fourth section occurs after the first large spike. Figure 12 depicts this period, as the 

magnitude of the chest acceleration. Since our test subject bounced after each run, there were 
several spikes after the peak with diminishing magnitude as the total energy of the mannequin 
dissipated.  

 
The other problem with this region is that the mannequin is not in a pose that orients 

itself symmetrically; its legs were offset, meaning that it it could violently rotate its body after 
the first bounce. This can be viewed in both the acceleration graphs and the gyroscope graphs, as 
in Figure 13. It depicts the acceleration and angular velocity, where the x-, y-, and z- components 
are in blue, orange, and green respectively. Corresponding to the spike in acceleration, there is a 
sharp and sustained increase in the rotation rate, which indicates that the mannequin spun 
rapidly. This can be seen in footage of the experiments. During the fall, the rotation rate can be 
difficult to analyze due to the randomness of each experiment. There is a chance that the 
mannequin twirls after impact causing cases where the rotation rate peaks the sensor and flatlines 
the graph, as shown with the blue line in the rotation rate speed in Figure 13. 

These previous plots show the usefulness of accelerometer and gyroscope data. The 
magnetometer, however, is less useful for fall detection. It gives rather chaotic results that are 
difficult to characterize, and has the potential to give many false-positive fall warnings from 
strong magnetic fields that can be found in permanent magnets. The field strength when within 
one foot of a sensor given off by such magnets can be comparable to Earth’s magnetic field.5 
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Magnetometer data can be potentially useful when it comes to sorting out accelerations 
that produce overly chaotic data, such as walking up stairs, bending over, or sitting down. In 
each graph the top row corresponds to the chest, the second to the hip, and the third to the ankle 
sensors, and the usual color conventions.  
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Figure 14 specifically shows how walking up the stairs produces acceleration that is hard 

to manage, with lots of changes occurring each moment. The magnetometer provides data that is 
much less chaotic and easier to analyze. Figure 15 shows instances of a person bending over, and 
the magnetometer data . Figure 16 depicts someone sitting down several times, each cycle being 
one instance of that. In that figure, the second sensor, placed at the hip, gives a great clean set of 
data because it was placed with its z- axis facing up. This means it was consistently aligned with 
the Earth’s magnetic field, so it gave visually satisfying results.  

Despite its potential usefulness, though, our project shows that the data from the 
magnetometer doesn’t pose any significant advantages over acceleration. Acceleration and 
gyroscope data are fully sufficient to detect falls, so magnetometer data was not used in offline 
analysis. 
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Discussion 

 
To understand the behavior of a falling person, a useful beginning point is using a simple 

model. One can imagine a plank attached to the ground at the bottom end, released from a 
vertical position, as shown in Figure 17. The plank has M, length L, and uniform linear mass 
density . Its moment of inertia about the pivot point is given byρ ≡ dr

dm = L
M  

. dm r dr r dr MLI ≡ ∫
L

0
r2 = ∫

L

0
ρ 2 = ∫

L

0
L
M 2 = 3

1 2   

The net external torque on the plank acts at the center of mass, located at . The netr = 2
L  

external torque is where is the angle of the plank with respect to the the vectorΓ = 2
mgLsin(θ) θ  

representing the force of gravity.  
This plank is undergoing planar rotation with a known torque, so  where isαdt

dL = Γ = I α  
the angular acceleration of the plank and L is its angular momentum (Taylor, 373). Solving for 
angular acceleration one can show that .,α α = I

Γ = 2L
3gsin(θ)   

Since the plank is rigid, the tangential velocity at any point r along the rod can be written 
as (Taylor, 373), implying that . Using this formula, for any point r alongrv| | = ω  rdt

dv = a = α  
the rod,     , giving the magnitude of the acceleration. This value will vary with thea = r · 2L

3gsin(θ)  
angle from the vertical, increasing as the plank approaches the ground.  

The setup of the experiment resembles the assumptions of this model rather closely. The 
important points to the model are that the plank is attached to a pivot on the ground and that it is 
relatively uniform. Inspecting the videos, the mannequin’s feet are in contact with the floor up 
until the last moment before contact with the ground, so the pivot is a valid assertion. The 
mannequin has a mostly uniform density throughout, making the second assumption reasonable.  
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Figure 18 shows the integrated gyroscope readings, approximating the angle from the 

vertical as used in the model. Using the formula for the magnitude of acceleration a above, a was 
calculated and plotted for time steps corresponding to the data. The calculated a is shown in the 
plot to the right, and it can be seen that during the fall, the calculated acceleration value is a good 
approximation to the data. This can be used to measure how similar incoming data is to a real 
fall, where the angle is calculated in real time and the fall pattern is assembled and compared to 
what actual data is flowing in. 

This is a rather crude model for a fall, but it can closely resemble the motions of a person 
who may be walking forward and have their feet get caught on something and trip, while their 
body rotates around the point where their feet are. In most cases however, the body will not 
move rigidly and there will be more unpredictable movements that complicate calculations. 

 

Conclusions 
 

One of the largest issues with data interpretation and fall detection is deciding the 
thresholds that determine a fall. If they are too high, there might be false negatives, meaning a 
fall went undetected. If they are too low, then there is a great chance that there will be a false 
positive, meaning something like sitting down will trigger the system. No alert system will ever 
be perfect, but optimizing the threshold parameters will be crucial to the overall success of fall 
detection projects.  

One of the key findings is that the acceleration is most useful when looking at its 
magnitude, not its individual components. This is because the accelerometers have set axes that 
they measure their acceleration from. If there is code attempting to detect a fall based on the 
components, knowing the orientation of the sensor at every given time is crucial. A reliable way 
of doing this would be to place the accelerometers in a consistent, known orientation and 
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location. In real situations, a person would have to put on a belt or a special garment to attach 
these sensors to their body, but this does not guarantee a standard orientation. However, if one 
inspects the magnitude of the acceleration, the dependence on orientation mostly vanishes, which 
is why the magnitude is so widely used in this project. 

An interesting point is that a simple fall detector can be simple and low-profile, in 
principle. Each sensor’s magnitude of acceleration has similar characteristics, only with slightly 
differing amplitudes. This means that only one is absolutely necessary to detect a fall, more are 
extra information and more burden to carry. This is valuable, because making a user wear one 
accelerometer will be much easier than wearing three or more, and it will be significantly less 
costly.  

The creation of the device and tests have shown that using the Arduino Mega 2560 board 
is not necessary for this project. The purely necessary components are a battery, one LSM9DS1, 
a SD card reader (which in itself may be unnecessary, see below) and a microcontroller. To help 
with the size of the device, a smaller board than the Arduino Mega may be used, such as the 
Arduino Nano or Feather.  

 

Future Direction 
 

There are two broad goals for the future: gathering more data on human subjects, and 
creating a prototype detector device. The prototype detector device would be simple, as outlined 
above. It would be as small as possible while gathering as much data as it can, all while 
minimizing its power consumption. More precise engineering of the circuit to improve 
computational and electrical efficiency would be necessary to ensure it is working at all times. 

Gathering data on human subjects will enhance the depth of the project greatly. With the 
current mannequin model, only one type of fall is being detected, and it’s a rather artificial one at 
that. Real falls involve a person rolling, or their legs crumpling, or them hitting something on the 
way down, and no situation is ever as controlled as it is in the laboratory. Gathering that data and 
performing more advanced signal processing on it will allow a more generally usable and 
functional device for future fall victims, potentially saving many lives. 
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